

Framework for Mechanistic and Clinical Evaluation of a Novel Gene Therapy

1. Genetic Basis of Disease and Pathophysiology

- a. What is the pathogenic mechanism of the gene mutation at the molecular, cellular, or systemic level?
- b. What are the characteristics of the gene? (e.g., size/structure, chromosomal location, expression patterns, etc.)
- c. What are the common gene mutation types associated with the disease? (e.g., deletion, duplication, frameshift, etc.)
- d. What is the typical inheritance pattern of the mutation? (e.g., X-linked, autosomal dominant or recessive, mitochondrial, etc.)
- e. What are the disease characteristics in relation to the gene mutation?
 - i. Clinical presentation and severity
 - ii. Age of onset
 - iii. Organ system(s) affected
 - iv. Genotype-phenotype correlations

2. Gene Therapy Mechanism of Action

- a. Overview of Therapeutic Mechanism:
 - i. Is the therapy administered in vivo (directly into the patient) or ex vivo (cells modified outside the body and reintroduced)?
 - ii. What genetic technology is used: gene transfer or gene editing?
 - iii. If cellular components are involved, are they autologous (from the patient) or allogeneic (“off-the-shelf” from a donor)?
- b. Durability of Genetic Modification
 - i. Is the therapeutic effect intended to be long-term or transient?
 - ii. Does the therapy integrate into the genome or remain extrachromosomal?
- c. Therapeutic Objective
 - i. What is the intended outcome? For example:
 1. Permanent gene replacement
 2. Protein restoration
 3. Immune system modulation (e.g., immunotherapy)
 4. Disease symptom management or reversal
- d. Target Cell Considerations
 - i. What is the therapy’s target cell type?

- ii. Is the target cell the native producer of the therapeutic protein in healthy individuals?
- iii. Is the therapeutic protein secreted or membrane-bound?
- iv. Is the target cell suitable for gene therapy (e.g., accessibility, longevity, ability to express the gene, etc.)?
- e. Vector Design and Function
 - i. What type of vector is used (e.g., AAV, adenovirus, lentivirus, nanoparticle)?
 - ii. Why was this vector chosen (e.g., efficiency, safety, tropism)?
 - iii. Is the vector viral? If so, what are the biohazard and pharmacokinetic implications for patients and healthcare providers?
 - iv. Is the vector engineered for tropism toward specific cell or tissue types?
 - v. Does the vector integrate into the host genome or remain extrachromosomal?
- f. Drug Delivery Method
 - i. How is the therapy delivered?
 - 1. Systemic (e.g., IV infusion, subcutaneous injection, etc.)
 - 2. Local (e.g., intrathecal, ocular injection, etc.)
 - 3. Is the delivery method appropriate for reaching the target cell?
 - ii. What is the overall treatment journey? Examples:
 - 1. Single administration (e.g., one-time infusion or injection)
 - 2. Multi-step protocol involving cell collection, ex vivo modification, conditioning and infusion
- g. Clinical Pharmacology
 - i. Has the manufacturer reported pharmacokinetic (PK) and pharmacodynamic (PD) data?
 - ii. What do these data suggest about absorption, distribution, metabolism, and excretion?
 - iii. What is the defined “dose” of the therapy (e.g., vector genomes, particle units, etc.)?
 - 1. Is this dose considered high, intermediate, or low compared to similar therapies?
 - 2. Why was this dose selected/rationale for dosing strategy?

3. Adverse Drug Reactions and Contraindications

- a. What component(s) of the therapy contribute to an adverse effect or contraindication?
 - i. Genetic mutation (e.g., unintended consequences of correcting or modifying a gene)
 - ii. Vector (e.g., immune response, toxicity, off-target effects)
 - iii. New genetic material being introduced (e.g., overexpression, immunogenicity)

- iv. Concomitant medications used during treatment journey (e.g., corticosteroids, busulfan, immunosuppressants, etc.)
- b. Are there documented or theoretical risks for off-target genome editing?
 - i. If yes, what methods are used to detect and minimize the risk?
- c. How are adverse drug reactions managed? Examples:
 - i. Pre-medications
 - ii. Prophylactic post-dose drug regimens
 - iii. Structured post-dose monitoring schedule
 - iv. Monitoring setting
 - 1. Outpatient vs. inpatient
 - 2. What type(s) of event changes the level of monitoring required? (e.g., report to the emergency department)

CONTRIBUTORS

Danielle Pennock, PharmD, MBA

Clinical Coordinator, Gene Therapy
Johns Hopkins Care at Home (JHCH)

Date of publication: January 2026

Contact: sections@ashp.org

This resource was created by the SSPP Educational Steering Committee and is intended for informational use only. Please review the full disclaimer for important information regarding its purpose and limitations: <https://www.ashp.org/privacy-policy/terms-and-conditions/infographic-disclaimer-general>. ASHP is not responsible for any outcomes resulting from the use of this information.